

Infix & Postfix Notation 2020-03-20 pg 1 of 9

Infix & Postfix Notation

start

time:

Computing mathematical values is one of the most basic operations of a computer, but can be a

difficult problem as the expressions become more complex. How you arrange the parts of an

expression can change how difficult it is to process with a program. This kind of arrangement

of expressions and statements is especially useful in mathematical programming and when

writing compilers. In this activity, you will work with two different notations and examine the

ways the different notations can be processed.

Learning Objectives (for content & process)

After completing this activity, learners should be able to:

● Explain the complexities of writing programs to evaluate infix expressions.

● Evaluate postfix expressions.

● Convert infix expressions to postfix.

● Identify the differences and similarities between infix and postfix expressions.

Before you start, complete the form below to assign a role to each member.

If you have 3 people, combine Speaker & Reflector.

Team Date

Team Roles Team Member

Recorder​: records all answers & questions,

and provides copies to team & facilitator.

Speaker​: talks to facilitator and other teams.

Manager​: keeps track of time and makes sure

everyone contributes appropriately.

Reflector​: considers how the team could

work and learn more effectively.

Reminders:

1. Note the time whenever your team starts a new section or question.

2. Write legibly & neatly so that everyone can read & understand your responses.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 2 of 9

(13 min) A. Infix
start

time:

4 * (2 + 8 - 1) + 3 - 6 * 4

Evaluating mathematical expressions can be difficult for both humans and computers.

Humans usually prefer the notation above, but it poses several problems when trying to write a

computer program to evaluate it. This notation is referred to as ​infix​ because the operator is in

between the operands.

1. (3 min) Describe (with sentences or pseudocode) an algorithm for evaluating a

single-operator expression like ​2 + 8​ or ​3 - 6​ if the operator and operands were ​stored in

an array​ in order.

2. (3 min) Explain (with sentences or pseudocode) what you could do ​to extend your

algorithm​ to evaluate longer expressions using ​+​ or ​-​, such as ​2 + 8 - 1​ or ​7 + 4 + 9​.

3. (4 min) Explain (with sentences or pseudocode) why your algorithm could handle any length

of expression using ​+​ or ​-​, or explain how you could extend it to do so.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 3 of 9

4. (2 min) Explain why your algorithm would not correctly evaluate ​3 - 6 * 4​ or

2 + 8 / 2​.

5. (1 min) How do you (not a program) know how to correctly evaluate these expressions or the

one at the start of this section?

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 4 of 9

(12 min) B. Postfix
start

time:

4 2 8 + 1 - * 3 4 * +

The standard notation (such as ​3 * 4​) is known as ​infix​, because the operator is in the

middle of the two operands. While humans may find this easier to process visually, it can be

easier when writing computer programs to use ​postfix​ notation (such as ​3 4 * ​).

1. (2 min) Describe (with sentences or pseudocode) an algorithm for evaluating a

single-operator ​postfix​ expression like ​2 8 +​ or ​3 4 *​ if the operator and operands were

stored in an array​ in order.

2. (3 min) Explain (with sentences or pseudocode) what you could do ​to extend your

algorithm ​to evaluate longer expressions such as ​2 8 + 1 -​ or ​5 7 + 3 + 9 + 10 -​.
(Note: These should equal ​9​ and ​14​.)

3. (2 min) Explain why ​4 2 8 + 1 - *​ (equivalent to ​4 * (2 + 8 - 1)​) is more difficult

to evaluate than the ones in the previous question.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 5 of 9

You can use a stack to hold on to operands until you encounter an operator, as well as storing

the results of each operation to be used as operands later.

create an empty stack for operands

for each token in expression

 if token is an operand

 stack.push(operand)

 else // it’s an operator

 right = stack.pop()

 left = stack.pop()

 result = operation performed on left and right

 stack.push(result)

// stack should have one value at end (the final result)

4. (3 min) Using the algorithm above, show the contents of the ​operand stack​ for each step of

evaluating the expression at the start of this section (​4 2 8 + 1 - * 3 4 * +​). Confirm

that your result matches the value of the original infix version in section A.

Token 4 2 8 + 1 - * 3 4 * +

Stack

4

2

4

5. (2 min) Evaluate the expression ​9 2 12 * 3 / +​ using the algorithm above.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 6 of 9

(13 min) C. Infix to Postfix Conversion
start

time:

4 * (2 + 8 - 1) + 3 * 4

4 2 8 + 1 - * 3 4 * +

Converting infix expressions to postfix is at least as difficult as evaluating infix expressions.

However, it can be used for expressions with variables that will be evaluated many times with

different values, and similar processes are sometimes used by compilers to process code.

1. (2 min) List the operators from the infix expression above in the order that they would be

evaluated according to the standard precedence rules.

2. (1 min) Examine the list above and then the postfix expression. What can you see about the

operators in the postfix?

3. (1 min) Examine the operands in both the infix and postfix. What relationship does the order

of one have with the order of the other?

4. (2 min) Explain why ​2 6 + 5 4 * +​ is a valid postfix translation of the infix expression

2 + 6 + 5 * 4​, even though it does not fit the same pattern in terms of operators.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 7 of 9

You can also use a stack to hold onto operators until you need to add them to the postfix

expression, much like the stack that held the operands for the evaluation algorithm.

create an empty stack for operators

create an empty postfix string

for each token in infix

 if token is an operand

 add token to postfix

 else ​// it’s an operator
 while(stack not empty &

 precedence(stack.top()) >= precedence(token))

 add stack.pop() to postfix

 stack.push(token)

// copy any remaining operators to postfix

while (stack not empty)

 add stack.pop() to postfix

5. (3 min) Using the algorithm above, show the contents of the ​operator stack​ for each step

of converting the expression ​10 + 5 - 8 * 2 + 1​ to postfix. Also record the final postfix

version.

Token 10 + 5 - 8 * 2 + 1

Stack

+

Postfix:

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 8 of 9

6. (4 min) Using the infix/postfix conversion at the start of this section and your knowledge of

parentheses, fill in a procedure to handle start and end parentheses when converting infix

expressions to postfix. Use sentences or pseudocode.

create an empty stack for operators

create an empty postfix string

for each token in infix

 if token is an operand

 add token to postfix

 if token is “(”

 else if token is “)”

 else // it’s an operator

 while(stack not empty &

 precedence(stack.top()) >= precedence(token))

 add stack.pop() to postfix

 stack.push(token)

// copy any remaining operators to postfix

while (stack not empty)

 add stack.pop() to postfix

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Infix & Postfix Notation 2020-03-20 pg 9 of 9

Reflector​: Get an ‘​Evidence of Competencies​’ form and provide one piece of positive evidence for each

member of the group. Then, complete the section for the ‘Assessment of Group.’ Share the document

with each of your group members. All students should be collecting pieces of evidence for their

mid-semester and end of semester reflections.

© 2018-2020 by Sofia Lemons, sofia.lemons@cs.unh.edu. This work is licensed under

a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://drive.google.com/open?id=17eN3fa566odKzxgIWXRdeE9Axz_5Jf0O42hn93VGsjc

